Characterization of the na-requirement in cyanobacterial photosynthesis.

نویسندگان

  • G S Espie
  • A G Miller
  • D T Canvin
چکیده

The Na(+) requirement for photosynthesis and its relationship to dissolved inorganic carbon (DIC) concentration and Li(+) concentration was examined in air-grown cells of the cyanobacterium Synechococcus leopoliensis UTEX 625 at pH 8. Analysis of the rate of photosynthesis (O(2) evolution) as a function of Na(+) concentration, at fixed DIC concentration, revealed two distinct regions to the response curve, for which half-saturation values for Na(+) (K((1/2))[Na(+)]) were calculated. The value of both the low and the high K((1/2))(Na(+)) was dependent upon extracellular DIC concentration. The low K((1/2))(Na(+)) decreased from 1000 micromolar at 5 micromolar DIC to 200 micromolar at 140 micromolar DIC whereas over the same DIC concentration range the high K((1/2))(Na(+)) decreased from 10 millimolar to 1 millimolar. The most significant increases in photosynthesis occurred in the 1 to 20 millimolar range. A fraction of total photosynthesis, however, was independent of added Na(+) and this fraction increased with increased DIC concentration. A number of factors were identified as contributing to the complexity of interaction between Na(+) and DIC concentration in the photosynthesis of Synechococcus. First, as revealed by transport studies and mass spectrometry, both CO(2) and HCO(3) (-) transport contributed to the intracellular supply of DIC and hence to photosynthesis. Second, both the CO(2) and HCO(3) (-) transport systems required Na(+), directly or indirectly, for full activity. However, micromolar levels of Na(+) were required for CO(2) transport while millimolar levels were required for HCO(3) (-) transport. These levels corresponded to those found for the low and high K((1/2))(Na(+)) for photosynthesis. Third, the contribution of each transport system to intracellular DIC was dependent on extracellular DIC concentration, where the contribution from CO(2) transport increased with increased DIC concentration relative to HCO(3) (-) transport. This change was reflected in a decrease in the Na(+) concentration required for maximum photosynthesis, in accord with the lower Na(+)-requirement for CO(2) transport. Lithium competitively inhibited Na(+)-stimulated photosynthesis by blocking the cells' ability to form an intracellular DIC pool through Na(+)-dependent HCO(3) (-) transport. Lithium had little effect on CO(2) transport and only a small effect on the size of the pool it generated. Thus, CO(2) transport did not require a functional HCO(3) (-) transport system for full activity. Based on these observations and the differential requirement for Na(+) in the CO(2) and HCO(3) (-) transport system, it was proposed that CO(2) and HCO(3) (-) were transported across the membrane by different transport systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The effect of salt stress on ion accumulation, photosynthesis and compatible solute contents in four grapevine (Vitis vinifera) genotypes

Salinity tolerance of four grape genotypes [GharaUzum, Hosseini, AghUzum and Keshmeshi] was studied under various salinity levels (25, 50 and 100 mM NaCl). As a result, growth indices were significantly (P<0.05) reduced by salinity, whereas Cl- and Na+ contents in the plant parts were increased. Cl- accumulation exceeded than that of Na+ in all treatments. Among the genotypes studied, GharaUzum...

متن کامل

Photosynthesis Properties and Ion homeostasis of Different Pistachio Cultivar Seedlings in Response to Salinity Stress

Understanding mechanisms of salt tolerance, physiological responses to salt stress, and screening genotypes for breeding programs are important scientific issues remained to be investigated in pistachio. Therefore, current study was carried out to investigate response of different pistachio cultivars (G1, G2, Kaleghochi and UCB1) to salinity treatments (0.6 as control, 10, 20 dS m-1 using salin...

متن کامل

Ion content and its correlation with some physiological parameters in olive cultivars in response to salinity

ABSTRACT- Olive (Olea europaea L.) is one of the most valuable and widespread fruit trees in Iran. Salt stress-induced changes in membrane stability, photosynthesis and antioxidant enzyme activity were examined on four olive cultivars (Dakal, Shiraz, Zard and Amigdalifolia) by emphasizing the correlation between measured parameters and ion (K+, Na+) accumulation. Plants were subjected to four s...

متن کامل

Effect of short-term salinity on photosynthesis and ion relations in two sugar beet cultivars.

A factorial pot experiment was conducted based on randomized complete blocks design in green house condition to investigate the effect of short-term salt stress on leaf photosynthesis and ion relations of two sugar beet cultivars (Madison and 7233-P29). Plants were exposed to 0, 50, 150, 250, and 350 mM salinity (NaCl and CaCl2 in 5:1 molar ratio) for 48 hours. Measurements were done on younges...

متن کامل

Preparation and characterization of the Cloisite Na+ modified with cationic surfactants

An easy method was used to modify the Cloisite Na+ with different cationic surfactants. To prevent the damages in the clay crystal structure, the process was taken without acid activation. The organo-modified montmorillonite (MMT) were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermal analysis (TG/DTG), field emission scanning electron microscopy ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 88 3  شماره 

صفحات  -

تاریخ انتشار 1988